

HexWatershed’s documentation!

Table of contents

	1. What is HexWatershed?
	1.1. Overview

	1.2. Why do we develop HexWatershed

	2. Installation
	2.1. Overview

	2.2. Requirements
	2.2.1. C++ Requirements

	2.2.2. Python requirements

	2.2.3. Step by step instruction

	3. Application
	3.1. Overview

	3.2. Data structure

	3.3. Data preparation
	3.3.1. Single watershed

	3.3.2. Continuous domain with multiple watersheds

	3.3.3. Global (Disontinuous domain with multiple watersheds)

	3.4. Model configuration
	3.4.1. Main configuration

	3.4.2. Basin configuration

	3.5. Model simulation

	3.6. Simulation results

	3.7. Tutorial

	4. Algorithm
	4.1. Overview

	4.2. Algorithms
	4.2.1. Distance

	4.2.2. Area

	4.2.3. Angle

	4.2.4. Flow simplication

	4.2.5. Mesh generation

	4.2.6. Topological relationship reconstruction

	4.2.7. DEM resampling

	4.2.8. Stream burning

	4.2.9. Depression filling

	4.2.10. Flow direction

	4.2.11. Flow accumulation

	4.2.12. Stream grid

	4.2.13. River confluence

	4.2.14. Stream segment

	4.2.15. Subbasin

	4.2.16. Watershed

	5. History

	6. Support

	7. Contribution

	API Reference
	1. C++ API Docs
	1.1. Overview

	1.2. C++ class

	1.3. C++ function

Addendum

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

1. What is HexWatershed?

1.1. Overview

[image: _images/zenodo.6512369.svg]
 [https://doi.org/10.5281/zenodo.6512369]HexWatershed is a mesh independent flow direction model for hydrological models.

1.2. Why do we develop HexWatershed

Spatial discretization is the cornerstone of all spatially-distributed numerical simulations including watershed hydrology. Traditional square grid spatial discretization has several limitations:

	It cannot represent adjacency uniformly;

	It leads to the “island effect” and the diagonal travel path issue in D8 scheme;

	It cannot provide a spherical coverage without significant spatial distortion;

	It cannot be coupled with other unstructured mesh-based models such as the oceanic models.

Therefore, we developed a watershed delineation model (HexWatershed) based on the hexagon mesh spatial discretization.

We further improve HexWatershed to fully unstructured mesh-based to support variable-resolution meshes such as the MPAS mesh.

We propose that spatially distributed hydrologic simulations should consider using a hexagon grid spatial discretization.

2. Installation

2.1. Overview

HexWatershed was originally released in C++ 11.

Since HexWatershed v3.0, it was redesigned using a hybrid Python (frontend) and C++ (backend) approach.
Only the HexWatershed v3.0 will be maintained and supported.

The Python frontend is used to generate the mesh, build the topological relationship, and a list of other pre and post-processing algorithms.

The C++ backend is used to run the core HexWatershed model.

2.2. Requirements

It is possible to build the HexWatershed on Linux/Mac/Windows if your system can support both the C++ and Python environments:

2.2.1. C++ Requirements

2.2.1.1. CMake

cmake (v3.1.0 and above) is used to generate the makefile.

	Linux: cmake can be installed through a package manager. If you are on a Linux HPC, you administration should have already installed in most cases.

	Mac: cmake can be installed through Homebrew (https://brew.sh/): https://formulae.brew.sh/formula/cmake/

	Windows: cmake can be installed following the instruction from hexwatershed (https://cmake.org/download/).

2.2.1.2. GCC

GCC (v8.1.0 and above) is used to compile the C++ source code.

Similar to cmake, you can install GCC on linux or Mac.

	Linux: gcc can be installed through a package manager.

	Mac: gcc can be installed through Homebrew (https://formulae.brew.sh/formula/gcc).

	Windows: gcc can be installed using either Cygwin or MinGW (https://gcc.gnu.org/install/binaries.html).

A Linux version CMakeLists file is provided as an example. Two optional bash scripts are provided to assist this process.

2.2.2. Python requirements

2.2.2.1. Conda

The Conda platform is recommended to install the dependency Python package.
Conda can be installed throught either https://docs.conda.io/en/latest/miniconda.html
or
https://anaconda.org/.

2.2.2.2. Python

Python (3.8 and above) is required to run the Python package.
It can be installed using the conda tool.

2.2.2.3. Pip

The Python pip is used to install the HexWatershed Python package.
Pip is installed along with the Python.

2.2.3. Step by step instruction

Only an exmaple on Mac is provided below:

	Open the terminal, cd to a desired directory and create a folder for this project:

mkdir hexwatershed_tutorial

cd hexwatershed_tutorial

	Clone the repository into the current folder and go inside it:

git clone https://github.com/changliao1025/hexwatershed.git

cd hexwatershed

	Go into the build folder and run cmake:

cd build

cmake CMakeLists.txt -DCMAKE_CXX_COMPILER=g++-10

	Build and install the HexWatershed C++ program:

make install

	Create the conda environment for the HexWatershed and activate it:

conda config --set channel_priority strict

conda create --name hexwatershed_tutorial python=3.8

conda activate hexwatershed_tutorial

	Install the package through the conda-forge channel

conda install -c conda-forge hexwatershed

Because the GDAL library is used by this project and the proj library is often not configured correctly automatically.

On Linux or Mac, you can set it up like this, .bash_profile as an example:

Anaconda:

export PROJ_LIB=/people/user/.conda/envs/hexwatershed_tutorial/share/proj

Miniconda:

export PROJ_LIB=/opt/miniconda3/envs/hexwatershed_tutorial/share/proj

By now, your should have installed both the C++ and Python components of the HexWatershed model.

Next, you can test the model with the example following this instruction.
https://github.com/changliao1025/pyhexwatershed/

3. Application

3.1. Overview

The recommended approach to run a HexWatershed simulation is through the Python package interface.

3.2. Data structure

HexWatershed uses the JavaScript Object Notation (JSON) file format for model configuration and data exchange.

The input data includes:

	A ESRI shapefile that defines the original river network

	A raster Geotiff file that contains the digital elevation model (DEM) data

Note that depending on the configuration, not all the input files are needed, or additional input files are needed.

3.3. Data preparation

Because the core algorithms within HexWatershed assume that all the data are on the Geographic Coordinate System (GCS), most input and output data use GCS.

However, since most DEM data use the Projected Coordinate System (PCS), a reprojection is sometimes required.

Besides, depending on the simulation configuration, different data are needed. Below are some instructions for different scenarios.

To support all the major computer systems, we use the QGIS to operate on most spatial datasets.

3.3.1. Single watershed

3.3.1.1. River network

The river network file can be defined using a vector-based river flowline file.

Because the real-worlkd river network is often complex, some simplication is recommended. For example, the river network should only include major flowlines.

The shapefile should use the GCS system. If the vector you have is in a different PCS, you can re-project it to the GCS.

3.3.1.2. Boundary with buffer

This boundary with buffer zone is mainly used to extract the DEM.
* obtain a vector watershed boundary (PCS system), if the boudnary is in a GCS system, you should convert it to PCS simialr to the flowline.
* create a buffer zone watershed boundary (PCS system), the buffer increase distance should be linked to your resolution of intestes. For example, if the highest mesh resolution you will use is arounf 5km, then the buffer zone distance should be set to 5km.

3.3.1.3. DEM

The DEM file can be extracted from a large DEM which contains the study domain.

To do so, the recommended steps are:

	prepare a large DEM with includes the study domain (PCS system)

	overlay the DEM (PCS system) and river network, and edit the boundary (PCS system) near the outlet so that there is less extended DEM near the outlet (GCS or PCS system)

	extract the large DEM using the edited boundary (PCS system)

3.3.2. Continuous domain with multiple watersheds

3.3.2.1. River network

The river network file can be defined using a vector-based river flowline file.

Because the real-worlkd river network is often complex, some simplication is recommended. For example, the river network should only include major flowlines.

3.3.2.2. DEM

The DEM file can be extracted from a large DEM which contains the study domain.

3.3.3. Global (Disontinuous domain with multiple watersheds)

3.3.3.1. River network

Global scale hydrology dataset such as hydroshed may be used.
A subset of global river network can also be used.

3.3.3.2. DEM

It is recommended to assign/inject elevation within the mesh similart to MPAS.

Input usage by domain

	Domain

	Single watershed

	Multiple continuous watershed

	Multiple discontinuous watershed (global)

	Flowline

	Yes if iFlag_flowline == 1

	Yes if iFlag_flowline == 1

	Yes if iFlag_flowline == 1

	Raster DEM

	Yes if mesh type is not MPAS

	Yes if mesh type is not MPAS

	Yes if mesh type is not MPAS

	Boudnary

	Yes, it will be used to generate mesh

	Yes, it will be used to generate mesh

	No, so far global mesh is pre-defined

3.4. Model configuration

HexWatershed (as well as its submodule PyFlowline) uses two JSON files (main and basin) as the configuration files.

3.4.1. Main configuration

The main configuration JSON file contains the domain scale parameters.
Each domain may contain one or more basins.

Main configuration JSON file

	Keyword

	Data type

	Value

	Description

	sFilename_model_configuration

	string

	
	The full path to the main configuration file

	sModel

	string

	“hexwatershed”

	The model name

	sRegion

	string

	
	The study region

	sWorkspace_bin

	string

	
	The directory of the complied HexWatershed binary

	sWorkspace_input

	string

	
	The directory of the input

	sWorkspace_output

	string

	
	The directory of the output

	sJob

	string

	
	The job name for HPC

	iFlag_create_mesh

	int

	0 or 1

	Flag to generate mesh

	iFlag_save_mesh

	int

	0 or 1

	Flag to save mesh

	iFlag_simplification

	int

	0 or 1

	Flag for flowline simplication

	iFlag_intersect

	int

	0 or 1

	Flag to flowline mesh intersection

	iFlag_resample_method

	int

	1 or 2

	Method for DEM resampling

	iFlag_flowline

	int

	0 or 1

	Flag for flowline

	iFlag_global

	int

	0 or 1

	Flag for global simulation

	iFlag_multiple_outlet

	int

	0 or 1

	Flag for multiple basin simulation

	iFlag_use_mesh_dem

	int

	0 or 1

	Flag to use DEM within the mesh

	iFlag_elevation_profile

	int

	0 or 1

	Flag to turn on elevation profile

	iFlag_rotation

	int

	0 or 1

	Flag for mesh generation using rotation

	iFlag_stream_burning_topology

	int

	0 or 1

	Flag to turn on stream burning topology

	iFlag_save_elevation

	int

	0 or 1

	Flag to save elevation

	iCase_index

	int

	
	ID of case

	iMesh_type

	int

	1 to 5

	Mesh type

	dMissing_value_dem

	float

	
	The missing value in the DEM

	dBreach_threshold

	float

	
	The threshold parameter for the hybrid breaching filling algorithm

	dAccumulation_threshold

	float

	
	The accumulation parameter to define stream cell

	dLongitude_left

	float

	0 or 1

	The domain left boundary

	dLongitude_right

	float

	
	The domain right boundary

	dLatitude_bot

	float

	
	The domain bottom boundary

	dLatitude_top

	float

	
	The domain top boundary

	dResolution_degree

	float

	
	Mesh resolution in degree

	dResolution_meter

	float

	
	Mesh resolution in meter

	sDate

	string

	
	The date of the simulation

	sMesh_type

	string

	hexagon

	The mesh type

	sFilename_hexwatershed

	string

	
	The filename of the binary

	sFilename_spatial_reference

	string

	
	The spatial reference of the river network

	sFilename_dem

	string

	
	The filename of the DEM

	sFilename_mesh_netcdf

	float

	
	The filename of the MPAS netcdf file

	sFilename_basins

	string

	
	The full path of the basin configuration file

3.4.2. Basin configuration

The basin configuration file contains one or more block of JSON basin object. Each block contains the configuration to a unique basin. Different basin may have different parameters.

Basin configuration JSON file

	Keyword

	Data type

	Value

	Description

	dLatitude_outlet_degree

	float

	
	The outlet latitude

	dLongitude_outlet_degree

	float

	0 or 1

	The outlet longitude

	dAccumulation_threshold

	float

	
	The accumulation parameter to define the stream cell

	dThreshold_small_river

	float

	
	The threshold parameter to remove small river

	iFlag_dam

	int

	0

	Reserved for dam burning

	iFlag_disconnected

	int

	0

	Reserved for disconnected flowline

	lBasinID

	long

	
	The basin ID

	sFilename_dam

	string

	
	Reserved for dam burning

	sFilename_flowline_filter

	string

	
	The filename of the stream vector

	sFilename_flowline_raw

	string

	
	The filename of the raw stream vector

	sFilename_flowline_topo

	string

	
	Reserved for dam burning

3.5. Model simulation

The easiest way to setup a simulation is to use an existing template. You can also generate an emtpy template using the provided APIs.

Then you can edit the template by replacing with the actual input filenames and paths.

Last, you can run the model through the Python APIs.

3.6. Simulation results

After the simulation is finished, you should obtain a list of fils within the output directory. Depending on the configuration, not all files will be outputed.

	depression filled DEM

	flow direction

	flow accumulation

	stream segment

	stream order

	subbasin boundary

	watershed boundary

These files are saved using the GeoJSON file format.

Domain-scale output option

	Vector type

	Variable

	Global

	Multiple outlets

	Single outlet

	Point

	Dam

	No

	No

	No

	Polyline

	Flow direction

	Yes

	Yes

	No

	Polyline

	Stream segment

	Yes

	Yes

	No

	Polygon

	Elevation

	Yes

	Yes

	No

	Polygon

	Slope

	Yes

	Yes

	No

	Polygon

	Drainage area

	Yes

	Yes

	No

	Polygon

	Travel distance

	Yes

	Yes

	No

Watershed-scale output option

	Vector type

	Variable

	Global

	Multiple outlets

	Single outlet

	Point

	Dam

	No

	No

	No

	Polyline

	Flow direction

	No

	Yes

	Yes

	Polyline

	Stream segment

	No

	Yes

	Yes

	Polygon

	Elevation

	Yes

	Yes

	Yes

	Polygon

	Slope

	Yes

	Yes

	Yes

	Polygon

	Drainage area

	Yes

	Yes

	Yes

	Polygon

	Travel distance

	No

	Yes

	Yes

You can use any GIS tools (ArcGIS, ENVI, and QGIS, etc.) to visualize the results.

3.7. Tutorial

A full tutorial is provide at https://github.com/changliao1025/hexwatershed_tutorial

4. Algorithm

4.1. Overview

HexWatershed includes major classicial watershed delineation algorithms with modifications.

These algorithms are implemented within both the Python frontend and the C++ backend.

4.2. Algorithms

4.2.1. Distance

Distance is calculated using the great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle.

4.2.2. Area

A closed geometric figure on the surface of a sphere which is formed by the arcs of great circles.

4.2.3. Angle

A spherical angle is a particular dihedral angle; it is the angle between two intersecting arcs of great circles on a sphere.

4.2.4. Flow simplication

Flowline simplication is achieved through the PyFlowline Python package (https://anaconda.org/conda-forge/pyflowline)

4.2.5. Mesh generation

Mesh generation is achieved through the PyFlowline Python package (https://anaconda.org/conda-forge/pyflowline)

4.2.6. Topological relationship reconstruction

Topological relationship reconstruction is achieved through the PyFlowline Python package (https://anaconda.org/conda-forge/pyflowline)

4.2.7. DEM resampling

HexWatershed provides two resampling methods:

4.2.7.1. Nearest resampling

In the nearest resampling, the model defines the cell elevation in the following steps:

	obtain cell center location in longitude and latitude

	convert location into DEM row and column indices

	obtain DEM pixel value and assign as the cell elevation

4.2.7.2. Zonal mean resampling

In the zonal mean resampling, the model defines the cell elevation in the following steps:

	obtain all the cell vertex locations in longitude and latitude

	define a polygon using the vertex locations

	extract the DEM using the polygon

	calculate the mean extracted DEM and assign as the cell elevation

4.2.8. Stream burning

A topological relationship-based stream burning algorithm is implemented in HexWatershed v3.0.

4.2.9. Depression filling

In general, the depression filling algorithm is similar to that in the HexWatershed v1.0.

The major difference is related to the stream burning algorithm.

4.2.10. Flow direction

The flow direction is defined based on elevation differences and distances.

Currently, only the deepest slope is used to define the single flow direction.

Multi-flow directions will be supported in future versions.

4.2.11. Flow accumulation

The actual drainage area is used instead of flow accumulation cell number. This is because each cell may have different cell area.

4.2.12. Stream grid

The flow accumulation threshold is used to define the stream grid.

4.2.13. River confluence

If a stream grid has more than one upstream, this stream grid is defined as a river confluence.

4.2.14. Stream segment

Each individual stream line between headwater-confluence is defined as a stream segment

4.2.15. Subbasin

All the cells that contributes to a stream segment are used to define a subbasin.

4.2.16. Watershed

All the cells that contributes to a river outlet are used to define a watershed.

5. History

	2017-05-12: Design

	2020-04-12: Publish

6. Support

Limited support is provided through Issue [https://github.com/pnnl/hexwatershed/issues]:

and Slack [https://hexwatershed.slack.com/]:

7. Contribution

HexWatershed was developed and maintained by

	Chang Liao (Pacific Northwest National Laboratory)

API Reference

	1. C++ API Docs
	1.1. Overview

	1.2. C++ class

	1.3. C++ function

1. C++ API Docs

1.1. Overview

1.2. C++ class

1.2.1. JSON

	
class cell : public jsonmodel::JSONBase

	
Public Members

	
std::vector<long> aNeighbor

	neighbor ID

	
std::vector<long> aNeighbor_land

	land neighbor ID

	
std::vector<long> aNeighbor_ocean

	ocean neighbor ID

	
std::vector<float> aNeighbor_distance

	neighbor distance

	
float dElevation_mean

	average elevation

	
float dElevation_profile0

	elevation profile

	
float dElevation_raw

	original elevation

	
float dLatitude_center_degree

	latitude

	
float dLongitude_center_degree

	longitude

	
float dArea

	cell area

	
float dAccumulation

	flow accumulation

	
float dSlope_between

	slope between this cell and downslope cell

	
float dSlope_within

	slope based on high resolution DEM

	
float dSlope_profile

	slope based on elevation profile between downslope cell

	
float dLength_flowline

	flowline length

	
float dLength

	effective cell length

	
float dDistance_to_downslope

	distance to downsloe

	
float dDistance_to_subbasin_outlet

	distance to subbasin outlet

	
float dDistance_to_watershed_outlet

	distance to watershed outlet

	
int nVertex

	number of vertex

	
long lCellID

	global cell ID

	
long lCellID_downstream_burned

	pre-descibed global downstream cell ID

	
long lCellID_downslope

	global downslope cell ID

	
class vertex

	
Public Functions

	
bool operator==(const vertex &cVertex)

	overload the equal function

	Parameters:

	cVertex –

	Returns:

	true

	Returns:

	false

	
float calculate_slope(vertex pt)

	calculate the slope between two vertices

	Parameters:

	pVertex_in –

	Returns:

	float

1.2.2. Domain

	
class domain

	
Public Functions

	
domain(std::string sFilename_configuration_in)

	
	Parameters:

	sFilename_configuration_in – user provided model configuration file please refer to the user guide for I/O instruction

	
int domain_read()

	read data from the model configuration file

	Returns:

	

	
int domain_read_configuration_file()

	read the user provided configuration file

	Returns:

	

	
int domain_read_input_data()

	read input data

	Returns:

	int

	
int domain_retrieve_user_input()

	extract the dictionary from user provided configuration file

	Returns:

	

	
int domain_run()

	run the model

	Returns:

	

	
int domain_cleanup()

	clean up the model status

	Returns:

	

1.2.3. Compset

	
class compset

	
Public Functions

	
int compset_initialize_model()

	initialize the model

	Returns:

	

	
int compset_save_model()

	save all the model outputs

	Returns:

	

	
int compset_priority_flood_depression_filling()

	DEM depression filling

	Returns:

	

	
int compset_stream_burning_with_topology(long lCellID_center)

	
	Parameters:

	lCellIndex_center –

	Returns:

	int

	
int compset_stream_burning_without_topology(long lCellID_center)

	
	Parameters:

	lCellIndex_center –

	Returns:

	int

	
int compset_breaching_stream_elevation(long lCellID_center)

	
	Parameters:

	lCellID_active –

	Returns:

	int

	
int compset_calculate_flow_direction()

	calculate the flow direction based on elevation, this step “should” only be run after the depression filling

	Returns:

	

	
int compset_calculate_flow_accumulation()

	calculate the flow accumulation based on flow direction

	Returns:

	

	
int compset_define_stream_grid()

	define the stream network using flow accumulation value

	Returns:

	

	
int compset_define_watershed_boundary()

	define the watershed boundary using outlet

	Returns:

	

	
int compset_define_stream_confluence()

	define the stream confluence point because we need to topology info, the vCell_active will be used

	Returns:

	

	
int compset_define_stream_segment()

	define the stream segment, must use vCell_active

	Returns:

	

	
int compset_define_subbasin()

	define subbasin boundary, it requires cell topology, so the vCell_active is used

	Returns:

	

	
int compset_calculate_watershed_characteristics()

	
	Returns:

	int

	
int compset_save_watershed_characteristics()

	save the watershed characteristics in the output

	Returns:

	

	
std::vector<hexagon> compset_obtain_boundary(std::vector<hexagon> vCell_in)

	retrieve the boundary of the hexagon grid boundary it is not ordered

	Parameters:

	vCell_in – :the hexagon grid

	Returns:

	

	
int find_land_ocean_interface_neighbors(long lCellID_in)

	
	Parameters:

	lCellID_in –

	Returns:

	int

	
int compset_update_cell_elevation()

	
	Returns:

	int

	
int compset_update_vertex_elevation()

	
	Returns:

	int

	
int compset_check_digital_elevation_model_depression(std::vector<hexagon> vCell_in)

	private functions. check whether there is local depression in the dem or not. in fact, a more rigorous method should pass in dem instead of the hexagon vector but because we will not change any member variable here, it should be safe to pass in the vector

	Parameters:

	vCell_in –

	Returns:

	

	
std::array<long, 3> compset_find_lowest_cell_in_priority_queue(std::vector<hexagon> vCell_in)

	find the hexagon with the lowest elevation

	Parameters:

	vCell_in – :the hexagon grid

	Returns:

	

1.2.4. General

	
class edge

	
Public Functions

	
int calculate_length()

	calculate the arc length of an edge on a sphere

	Returns:

	int

	
int check_point_overlap(vertex pt)

	check whether a vertex is one the edge or not

	Parameters:

	pVertex_in –

	Returns:

	int

	
int check_overlap(vertex pt_start, vertex pt_end)

	check whether an edge overlap with another edge, this algorithm has error

	Parameters:

	
	pVertex_start –

	pVertex_end –

	Returns:

	int

	
int check_shared(edge ed)

	check whether two edge are the same ignoring the direction

	Parameters:

	pEdge_in –

	Returns:

	int

	
class flowline

	
Public Functions

	
int share_vertex(flowline pFlowline_in)

	check whether two flowlines share a starting or ending vertex

	Parameters:

	pFlowline_in –

	Returns:

	int

	
int share_vertex(flowline pFlowline_in, vertex pVertex_in)

	check two flowlines share the specified vertex

	Parameters:

	
	pFlowline_in –

	pVertex_shared –

	Returns:

	int

	
class hexagon

	
Public Functions

	
int calculate_average_edge_length()

	calculate the mean edge length

	Returns:

	int

	
int calculate_effective_resolution()

	calculate the effective resolution using area

	Returns:

	int

	
int update_location()

	update the x y z location

	Returns:

	int

Public Members

	
long lCellID

	Brief description. this is the mesh id from the json, it might be the same with Global ID,

Detailed description starts here.

	
class segment

	
Public Functions

	
int calculate_stream_segment_characteristics()

	
	Returns:

	int

	
int calculate_stream_segment_length()

	calculate stream segment length

	Returns:

	int

	
class subbasin

	

	
class watershed

	
Public Functions

	
int watershed_build_stream_topology()

	build the stream topology based on stream segment information

	Returns:

	

	
int watershed_define_stream_order()

	build the stream order based on stream topology

	Returns:

	

	
int calculate_watershed_characteristics()

	calculate the watershed characteristics

	Returns:

	

	
int calculate_watershed_drainage_area()

	calculate the watershed drainage total area we can either sum up hexagon or sum up subbasin

	Returns:

	

	
int calculate_watershed_total_stream_length()

	calculate the total stream length

	Returns:

	

	
int calculate_watershed_longest_stream_length()

	calculate the longest stream length

	Returns:

	

	
int calculate_watershed_drainage_density()

	calculate the watershed area to stream length ratio

	Returns:

	

	
int calculate_watershed_average_slope()

	calculate the mean slope of the watershed we can use either subbasin or each cell

	Returns:

	

	
int calculate_topographic_wetness_index()

	calculate the TWI index using method from //https://en.wikipedia.org/wiki/Topographic_wetness_index // {\displaystyle \ln {a \over \tan b}}

	Returns:

	

	
int save_watershed_characteristics()

	save the watershed characteristics in the output

	Returns:

	

1.2.5. Data

	
class data

	
Public Static Functions

	
static float *read_binary(std::string sFilename_in)

	read_eco3d binary file (float type)

	Parameters:

	sFilename_in –

	Returns:

	float*

	
static std::vector<float> read_binary_vector(std::string sFilename_in)

	read_eco3d binary and save to a vector

	Parameters:

	sFilename_in –

	Returns:

	vector<float>

	
static int write_binary_vector(std::string sFilename_in, vector<float> vData_in)

	write vector to float binary file

	Parameters:

	
	sFilename_out –

	vData_in –

	Returns:

	int

1.3. C++ function

Glossary

	DEM
	Digital elevation model.

	Spatial discretization
	Subdivision of the computational domain in a finite number of control volumes or elements (i.e., the generation of the numerical grid).

	Stream order
	The stream order or waterbody order is a positive whole number used in geomorphology and hydrology to indicate the level of branching in a river system.

	Watershed
	A drainage basin is any area of land where precipitation collects and drains off into a common outlet, such as into a river.

Index

 D
 | H
 | J
 | S
 | W

D

 	
 	data (C++ class)

 	data::read_binary (C++ function)

 	
 	data::read_binary_vector (C++ function)

 	data::write_binary_vector (C++ function)

 	DEM

H

 	
 	hexwatershed::compset (C++ class)

 	hexwatershed::compset::compset_breaching_stream_elevation (C++ function)

 	hexwatershed::compset::compset_calculate_flow_accumulation (C++ function)

 	hexwatershed::compset::compset_calculate_flow_direction (C++ function)

 	hexwatershed::compset::compset_calculate_watershed_characteristics (C++ function)

 	hexwatershed::compset::compset_check_digital_elevation_model_depression (C++ function)

 	hexwatershed::compset::compset_define_stream_confluence (C++ function)

 	hexwatershed::compset::compset_define_stream_grid (C++ function)

 	hexwatershed::compset::compset_define_stream_segment (C++ function)

 	hexwatershed::compset::compset_define_subbasin (C++ function)

 	hexwatershed::compset::compset_define_watershed_boundary (C++ function)

 	hexwatershed::compset::compset_find_lowest_cell_in_priority_queue (C++ function)

 	hexwatershed::compset::compset_initialize_model (C++ function)

 	hexwatershed::compset::compset_obtain_boundary (C++ function)

 	hexwatershed::compset::compset_priority_flood_depression_filling (C++ function)

 	hexwatershed::compset::compset_save_model (C++ function)

 	hexwatershed::compset::compset_save_watershed_characteristics (C++ function)

 	hexwatershed::compset::compset_stream_burning_with_topology (C++ function)

 	hexwatershed::compset::compset_stream_burning_without_topology (C++ function)

 	hexwatershed::compset::compset_update_cell_elevation (C++ function)

 	hexwatershed::compset::compset_update_vertex_elevation (C++ function)

 	hexwatershed::compset::find_land_ocean_interface_neighbors (C++ function)

 	hexwatershed::domain (C++ class)

 	hexwatershed::domain::domain (C++ function)

 	hexwatershed::domain::domain_cleanup (C++ function)

 	hexwatershed::domain::domain_read (C++ function)

 	hexwatershed::domain::domain_read_configuration_file (C++ function)

 	hexwatershed::domain::domain_read_input_data (C++ function)

 	
 	hexwatershed::domain::domain_retrieve_user_input (C++ function)

 	hexwatershed::domain::domain_run (C++ function)

 	hexwatershed::edge (C++ class)

 	hexwatershed::edge::calculate_length (C++ function)

 	hexwatershed::edge::check_overlap (C++ function)

 	hexwatershed::edge::check_point_overlap (C++ function)

 	hexwatershed::edge::check_shared (C++ function)

 	hexwatershed::flowline (C++ class)

 	hexwatershed::flowline::share_vertex (C++ function), [1]

 	hexwatershed::hexagon (C++ class)

 	hexwatershed::hexagon::calculate_average_edge_length (C++ function)

 	hexwatershed::hexagon::calculate_effective_resolution (C++ function)

 	hexwatershed::hexagon::lCellID (C++ member)

 	hexwatershed::hexagon::update_location (C++ function)

 	hexwatershed::segment (C++ class)

 	hexwatershed::segment::calculate_stream_segment_characteristics (C++ function)

 	hexwatershed::segment::calculate_stream_segment_length (C++ function)

 	hexwatershed::subbasin (C++ class)

 	hexwatershed::watershed (C++ class)

 	hexwatershed::watershed::calculate_topographic_wetness_index (C++ function)

 	hexwatershed::watershed::calculate_watershed_average_slope (C++ function)

 	hexwatershed::watershed::calculate_watershed_characteristics (C++ function)

 	hexwatershed::watershed::calculate_watershed_drainage_area (C++ function)

 	hexwatershed::watershed::calculate_watershed_drainage_density (C++ function)

 	hexwatershed::watershed::calculate_watershed_longest_stream_length (C++ function)

 	hexwatershed::watershed::calculate_watershed_total_stream_length (C++ function)

 	hexwatershed::watershed::save_watershed_characteristics (C++ function)

 	hexwatershed::watershed::watershed_build_stream_topology (C++ function)

 	hexwatershed::watershed::watershed_define_stream_order (C++ function)

J

 	
 	jsonmodel::cell (C++ class)

 	jsonmodel::cell::aNeighbor (C++ member)

 	jsonmodel::cell::aNeighbor_distance (C++ member)

 	jsonmodel::cell::aNeighbor_land (C++ member)

 	jsonmodel::cell::aNeighbor_ocean (C++ member)

 	jsonmodel::cell::dAccumulation (C++ member)

 	jsonmodel::cell::dArea (C++ member)

 	jsonmodel::cell::dDistance_to_downslope (C++ member)

 	jsonmodel::cell::dDistance_to_subbasin_outlet (C++ member)

 	jsonmodel::cell::dDistance_to_watershed_outlet (C++ member)

 	jsonmodel::cell::dElevation_mean (C++ member)

 	jsonmodel::cell::dElevation_profile0 (C++ member)

 	jsonmodel::cell::dElevation_raw (C++ member)

 	
 	jsonmodel::cell::dLatitude_center_degree (C++ member)

 	jsonmodel::cell::dLength (C++ member)

 	jsonmodel::cell::dLength_flowline (C++ member)

 	jsonmodel::cell::dLongitude_center_degree (C++ member)

 	jsonmodel::cell::dSlope_between (C++ member)

 	jsonmodel::cell::dSlope_profile (C++ member)

 	jsonmodel::cell::dSlope_within (C++ member)

 	jsonmodel::cell::lCellID (C++ member)

 	jsonmodel::cell::lCellID_downslope (C++ member)

 	jsonmodel::cell::lCellID_downstream_burned (C++ member)

 	jsonmodel::cell::nVertex (C++ member)

 	jsonmodel::vertex (C++ class)

 	jsonmodel::vertex::calculate_slope (C++ function)

 	jsonmodel::vertex::operator== (C++ function)

S

 	
 	Spatial discretization

 	
 	Stream order

W

 	
 	Watershed

Authors

	Chang Liao <changliao.climate@gmail.com>

Python API Docs

Overview

 nav.xhtml

 Table of Contents

 		
 HexWatershed’s documentation!

 		
 What is HexWatershed?

 		
 Overview

 		
 Why do we develop HexWatershed

 		
 Installation

 		
 Overview

 		
 Requirements

 		
 C++ Requirements

 		
 Python requirements

 		
 Step by step instruction

 		
 Application

 		
 Overview

 		
 Data structure

 		
 Data preparation

 		
 Single watershed

 		
 Continuous domain with multiple watersheds

 		
 Global (Disontinuous domain with multiple watersheds)

 		
 Model configuration

 		
 Main configuration

 		
 Basin configuration

 		
 Model simulation

 		
 Simulation results

 		
 Tutorial

 		
 Algorithm

 		
 Overview

 		
 Algorithms

 		
 Distance

 		
 Area

 		
 Angle

 		
 Flow simplication

 		
 Mesh generation

 		
 Topological relationship reconstruction

 		
 DEM resampling

 		
 Stream burning

 		
 Depression filling

 		
 Flow direction

 		
 Flow accumulation

 		
 Stream grid

 		
 River confluence

 		
 Stream segment

 		
 Subbasin

 		
 Watershed

 		
 History

 		
 Support

 		
 Contribution

 		
 API Reference

 		
 C++ API Docs

 		
 Overview

 		
 C++ class

 		
 C++ function

 		
 Glossary

_static/file.png

_static/minus.png

_static/plus.png

